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Recognizing inverse problems…

• How to relate (indirect) observations to physical
parameters and models?

simple example =
linear regression

(solve with least squares)

! 

di = xi,yi( )
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y = m
1
x + m
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Inverse problem examples

medical imaging &
tomography

geophysics (seismic
profiling, prospecting)
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building models of gene
regulatory networks

+ source inversion
(security, environment)



Inverse problems

! 

G" (m) = d

“forward” operator 

model parameters

observed data

Given a set of data d, estimate m
(or, estimate m and Gθ )

∴ Formalize the process of inference. “Finding unknown
causes based on their effects [Alifanov]”



Inverse problems

• Why are they difficult?
– G-1 often non-local, non-causal.

⇒ Classically ill-posed:
1 No solution may match the data (existence)

- linear case, G ∈ Rmxn: ∃ a non-trivial data nullspace N(GT)

2 Many solutions may match the data (uniqueness)
- linear case: ∃ a non-trivial model nullspace N(G); more likely when data
  is sparse or degenerate relative to dim(m)

3 Ill-conditioning or instability:  Small changes in data d
can lead to large changes in m
- linear case: singular values σi(G) decay rapidly towards zero
⇒ result: sensitivity to noise



Noise and ill-conditioning

• Example: de-convolve ground acceleration from seismometer output
[from ABT04]

true model
(acceleration profile)

seismometer data +
uncorrelated 5% rms

noise

inverse solution
(not a very good solution)

forward inverse



Deterministic approaches

• Usual approach: regularization + optimization
• Regularization: impose smoothness, positivity, maximum

entropy, etc…
• Example: Tikhonov-type regularization

• Drawbacks:
– How to choose L, α, etc? Regularization can be somewhat

arbitrary.
– Regularization introduces bias, destroys consistency.
– No meaningful uncertainty/confidence intervals on the

resulting m.

! 

J = G(m) "d
2

2
+# Lm

2

2
minimize

e.g., a roughening matrix L



Outline

1 Inverse problems
2 Bayesian solution of inverse problems

• Formulation; Bayesian inference
• Results: source inversion under transient diffusion

3 New computational tools for Bayesian inversion
• Spectral representations of stochastic processes
• Polynomial chaos in Bayesian inference
• Results: accelerated MC and MCMC simulation

4 Extensions



Bayesian inference for IPs

• Let the model m be a random variable
• Bayes’ theorem:

• Compared to classical approaches:
– Not just a single value for m, but a probability density
∴ posterior = a COMPLETE description of uncertainty

– Additional information incorporated through the prior (expert
judgment, additional experiments, physical constraints, etc…)

– No regularization parameter per se

! 

p m d( ) =
p d m( )" m( )

p d m( )" m( )dm#
posterior

distribution

likelihood
function L(m)

prior
distribution

evidence
(here just a normalizing const)



Likelihoods, priors, &
hyperparameters

• Common shorthand for Bayes theorem:

• Likelihood function:
(how well does the model support the data?)
– Example: deterministic forward problem G(m); uncorrelated additive

measurement + model errors ηi ∼ pη(ξ)

– Common choice: pη = N(0,σ2)
– Alternate interpretation:

! 

L m( ) " p d m( )

! 

L m( ) = p" G(m)( )
i
# di( )

i
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d
i
= G(m)( )
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"
m d

m( )# p d m( )pm m( )

! 

dtrue +"( ) ~ pd (d) # L(m) = pd G(m)( )



Likelihoods, priors, &
hyperparameters

• Prior pm(m) comes from physical constraints, additional
knowledge; can be uninformative.

• Hyperparameters φ: what if we don’t know some aspects of the
noise/priors:
– ex: pη = N(0,σ2), σ2 unknown

• The posterior density                       IS the full Bayesian
solution to the inverse problem!

• Computational challenge: how to extract information from the
unnormalized posterior density?

• What if the forward model is expensive?

! 

p m," d( ) # p d m,"( )p m"( )p "( )

! 

E f[ ] = f m( )p m d( )dm"
! 

" m( ) # p m d( )



Source inversion— a model problem
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"T # ˆ n = 0 on $%, T(
v 
x ,0) = 0

N sources, each described by
parameters m = {χi, si, σi, τi}i=1…N

Data from M sensors on a regular
grid; d = {Tt1, Tt2, …}i=1…M

Ω = [0,1]×[0,1]

Ω

→ forward problem G(m)=d



Source inversion

• To demonstrate, make some simplifications:
– Consider only one source
– Fix the source strength si, Gaussian width σi, and shutoff

time τi

– Goal: infer the source location χ = (x,y) from a small set of
noisy measurements

∴This yields a 2-D posterior we can visualize…

• Measurement noise/error: ηi ∼ N(0,0.2)
• Priors: (x,y) = (m0,m1) ∼ U(0,1)



Forward simulation

Source at (x,y) = (0.25, 0.75); active for t ∈ [0,0.2]

t=0.10



Forward simulation

Source at (x,y) = (0.25, 0.75); active for t ∈ [0,0.2]

t=0.20



Forward simulation

Source at (x,y) = (0.25, 0.75); active for t ∈ [0,0.2]

t=0.30



Posterior density

• 3×3 grid of sensors; measure at t = {0.1, 0.2, 0.3}

noise η ∼ N(0, 0.2) noise η ∼ N(0, 0.8)



Posterior density

• Remove data, use more distant measurement times—
make the problem more ill-conditioned.
 ⇒ broadens the posterior

measure at t = {0.2, 0.3};
η ∼ N(0, 0.2)

measure at t = {0.35};
η ∼ N(0, 0.2)



Posterior density

• Ill-conditioning ⇒ greater sensitivity to data (noise) realization

ALL: measure at t = {0.35};
η ∼ N(0, 0.2)



Posterior density

• Add more sensors → more precise knowledge;
reduce ill-conditioning

measure at t = {0.35};
η ∼ N(0, 0.2), 11×11 sensor grid



Posterior density

• Non-unique solutions:
What if we had only a 1-D array of sensors? Place 3 sensors along
the y=0.5 line:

measure at t = {0.2};
η ∼ N(0, 0.2), sensors at (x,y) = (0,0.5), (0.5,0.5), (1.0,0.5)



Outline

1 Inverse problems
2 Bayesian solution of inverse problems

• Formulation; Bayesian inference
• Results: source inversion under transient diffusion

3 Computational tools for Bayesian inversion
• Spectral representations of stochastic processes
• Polynomial chaos in Bayesian inference
• Results: accelerated MC and MCMC simulation

4 Extensions



Computational tools for
Bayesian inference

• Real (i.e., high-dimensional) problems—what information to
extract from the posterior?
– Posterior means, variances, higher moments:

– Correlations, e.g., Cov(mi,mj)
– Marginal distributions p(mi)
– Posterior “movie” (draw samples from the posterior)

• How to do this effectively?
– Quadrature: Nevals = O(nd), prohibitive for large d.
– Cubature (“sparse quadrature”):  somewhat better scaling
– Sampling: Monte Carlo, Markov chain Monte Carlo (MCMC)

• Challenge: posterior evaluations are expensive
(forward problem)

! 

E" f[ ] =
I f[ ]
I 1[ ]

=
f m( )" m( )dm#
" m( )dm#



Spectral rep’n of random variables

• Let              be a probability space,                 a square-integrable
random variable. Then

– where               are orthonormal i.i.d. random variables
– and              are orthogonal multivariate polynomials:
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= a polynomial chaos expansion (PCe)



Spectral rep’n of random variables

• Many families of polynomials + distributions (Hermite + Gaussian,
Legendre + Uniform, …)

• Truncate expansion at order p                 and dimension n

• Orthogonality: Galerkin projection determines spectral coefficients

• Pseudo-spectral construction & other approaches for non-
polynomial funcs; implemented in a library for “stochastic
arithmetic.”

• Primarily used in uncertainty quantification: structural,
thermofluid, chemical systems [Ghanem, LeMaitre, Najm,
Karniadakis]
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PCe in Bayesian inference

• Write a PCe for m ~ prior:

 djk: spectral representation of the output of the forward model
      (compute once!)
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PCe in Bayesian inference

• Draw samples ξ(j) from the distribution of ξ:
– m(ξ) is thus sampled from its prior
– Integrate over the posterior without repeated forward solutions:

• More generally, this corresponds to a change of variables
m = g(ξ):

where g is a diffeomorphism mapping           to the range of m
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PCe in Bayesian inference

• Computational efficiency—partition the range of m into
non-overlapping sets Mi:

Put m=gi(ξ) on each subdomain.
Partitioning can be adaptive [LeMaître 2004; extends to
wavelets…].! 
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Source inversion
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"T # ˆ n = 0 on $%, T(
v 
x ,0) = 0

source described by parameters
m = {χi}, active for t ∈ [0,0.2]

Data from M sensors on a regular
grid; d = {Tt1, Tt2, …}i=1…M

Ω = [0,1]×[0,1]

Ω

→  Measurement noise/error: ηi ∼ N(0,0.2)
      Priors: (x,y) = (m0,m1) ∼ U(0,1)

⇒ Partition the support of the prior into 4 quadrants; solve
the stochastic spectral forward problem on each domain.



Pdfs at measurement points

• Predicted value of the scalar field at (x,y) = (0,0); t = 0.05
• Convergence with respect to order p

• Prior uniform on lower left quadrant of physical domain



Pdfs at measurement points

• Compare times: sensitivity information contained in the PCe…

• Predicted value of the scalar field at (x,y) = (0,0); t = 0.15
• Convergence with respect to order p



Surface response and error

• Predicted value of the scalar field at (x,y) = (0.0,0.5); t = 0.15:

response d3(ξ) via PC (p=6) error: d3(ξ) - G3(m(ξ))



Surface response and error

• Predicted value of the scalar field at (x,y) = (0.0,0.5); t = 0.15:

response d3(ξ) via PC (p=9) error: d3(ξ) - G3(m(ξ))



Posterior density

p=3 (dashed) vs direct (solid)

• 3×3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).



Posterior density

• 3×3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).

p=6 (dashed) vs direct (solid)



Posterior density

• 3×3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).

p=9 (dashed) vs direct (solid)



Monte Carlo speedup

• Posterior mean: total computational time vs number of samples

Per-sample cost
reduced by 2–3
orders of
magnitude!!



Monte Carlo speedup

• TOTAL computational time vs relative standard error
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" 2 =Varpm f (m)L(m)[ ]
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MCMC

• Construct a Markov chain of samples m(t) such that, after some
burn-in period b, samples are being drawn from the posterior
distribution π(m)
– Markov chain defined by transition kernel
– π is the stationary distribution:

• How? [Metropolis 1953, Hastings 1970, Tierney 1995]
– Proposal distribution
– Acceptance probability 0 < α ≤ 1:

– Acceptance ⇒ m(t+1) = y; otherwise m(t+1) = m(t)

• Ergodic average:
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MCMC

• Why use MCMC?
– Directly “simulate” the posterior— more efficient sampling
– No normalization
– Automatic marginalization

• Under certain conditions (irreducibility, recurrence)
– SLLN:

– CLT:

                                             where

• For difficult distributions, diagnosing/verifying convergence still
requires practical experience…
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MCMC

• Apply random-walk Metropolis to the PC-transformed problem:

chain position in the ξ plane ξ0-coordinate of chain
position versus time
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MCMC

• Mixing, good and bad:

ξ0−coordinate of the chain,
RWM with σ=2.0

autocovariance for different
samplers



MCMC

• Marginal distributions via kernel density estimation:
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Extending the Bayesian framework

• Inversion from forward models with additional parametric
uncertainty (mP):

– Propagate both p(mI) and p(mP) with PCe

• Uncertain forward models—another approach:

– The exact forward model is now a special case:
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P
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e.g., uncertain diffusivity

posterior on mI
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Conclusions

• Bayesian inference for inverse problems
– A complete approach to noisy data, incomplete data, ill-conditioning,

and stochastic forward problems.
– A quantitative description of uncertainty in the inverse result.

• Accelerating Bayesian inverse problem solutions with PCe:
– Spectral representation of random variables; Galerkin projection.
– Propagate prior uncertainty through forward model; rapid sampling

by evaluating PCe
– Choice of basis, order, decomposition of the prior support.
– Sampling strategies (MC, MCMC)

• Demonstrate w/source inversion in transient diffusion



Ongoing work

• Larger problems, more complex source inversion:
– Multiple sources, additional uncertain source parameters
– PCe approaches for inverse problems on continuous fields
– Add convective transport!

• Inverse problems in disease propagation
(with J. Ray, K. Devine, P. Fast)

• Structural inference: building models of biological kinetic
networks (e.g., gene regulatory networks from microarray
data)


